p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.8C22≀C2, (C2×D4).91D4, (C2×C8).153D4, (C2×Q8).82D4, (C22×D8).3C2, C4.44(C4⋊D4), C2.14(C8⋊3D4), C23.900(C2×D4), (C22×C4).141D4, C2.29(D4⋊D4), (C22×SD16)⋊12C2, C2.16(D4.2D4), C22.202C22≀C2, C2.16(C8.12D4), C22.103(C4○D8), C22.73(C4⋊1D4), C2.17(C23⋊2D4), C24.3C22⋊8C2, (C2×C42).348C22, (C22×C8).108C22, (C22×D4).64C22, (C22×Q8).53C22, C22.221(C4⋊D4), C22.130(C8⋊C22), (C22×C4).1434C23, C22.7C42⋊20C2, (C2×C4.4D4)⋊3C2, (C2×D4⋊C4)⋊33C2, (C2×Q8⋊C4)⋊20C2, (C2×C4).1027(C2×D4), (C2×C4).873(C4○D4), (C2×C4⋊C4).107C22, SmallGroup(128,744)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for (C22×D8).C2
G = < a,b,c,d,e | a2=b2=c8=d2=1, e2=c4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ece-1=ac3, ede-1=abc2d >
Subgroups: 536 in 213 conjugacy classes, 54 normal (34 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, D4⋊C4, Q8⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4.4D4, C22×C8, C2×D8, C2×SD16, C22×D4, C22×Q8, C22.7C42, C24.3C22, C2×D4⋊C4, C2×Q8⋊C4, C2×C4.4D4, C22×D8, C22×SD16, (C22×D8).C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C4⋊1D4, C4○D8, C8⋊C22, C23⋊2D4, D4⋊D4, D4.2D4, C8.12D4, C8⋊3D4, (C22×D8).C2
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 49)(16 50)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 57)(24 58)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 33)(24 34)(41 62)(42 63)(43 64)(44 57)(45 58)(46 59)(47 60)(48 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 62)(18 61)(19 60)(20 59)(21 58)(22 57)(23 64)(24 63)(25 52)(26 51)(27 50)(28 49)(29 56)(30 55)(31 54)(32 53)(33 43)(34 42)(35 41)(36 48)(37 47)(38 46)(39 45)(40 44)
(1 63 5 59)(2 24 6 20)(3 61 7 57)(4 22 8 18)(9 35 13 39)(10 41 14 45)(11 33 15 37)(12 47 16 43)(17 27 21 31)(19 25 23 29)(26 60 30 64)(28 58 32 62)(34 52 38 56)(36 50 40 54)(42 51 46 55)(44 49 48 53)
G:=sub<Sym(64)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,64)(24,63)(25,52)(26,51)(27,50)(28,49)(29,56)(30,55)(31,54)(32,53)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44), (1,63,5,59)(2,24,6,20)(3,61,7,57)(4,22,8,18)(9,35,13,39)(10,41,14,45)(11,33,15,37)(12,47,16,43)(17,27,21,31)(19,25,23,29)(26,60,30,64)(28,58,32,62)(34,52,38,56)(36,50,40,54)(42,51,46,55)(44,49,48,53)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(41,62)(42,63)(43,64)(44,57)(45,58)(46,59)(47,60)(48,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,64)(24,63)(25,52)(26,51)(27,50)(28,49)(29,56)(30,55)(31,54)(32,53)(33,43)(34,42)(35,41)(36,48)(37,47)(38,46)(39,45)(40,44), (1,63,5,59)(2,24,6,20)(3,61,7,57)(4,22,8,18)(9,35,13,39)(10,41,14,45)(11,33,15,37)(12,47,16,43)(17,27,21,31)(19,25,23,29)(26,60,30,64)(28,58,32,62)(34,52,38,56)(36,50,40,54)(42,51,46,55)(44,49,48,53) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,49),(16,50),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,57),(24,58),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)], [(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,33),(24,34),(41,62),(42,63),(43,64),(44,57),(45,58),(46,59),(47,60),(48,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,62),(18,61),(19,60),(20,59),(21,58),(22,57),(23,64),(24,63),(25,52),(26,51),(27,50),(28,49),(29,56),(30,55),(31,54),(32,53),(33,43),(34,42),(35,41),(36,48),(37,47),(38,46),(39,45),(40,44)], [(1,63,5,59),(2,24,6,20),(3,61,7,57),(4,22,8,18),(9,35,13,39),(10,41,14,45),(11,33,15,37),(12,47,16,43),(17,27,21,31),(19,25,23,29),(26,60,30,64),(28,58,32,62),(34,52,38,56),(36,50,40,54),(42,51,46,55),(44,49,48,53)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | C4○D4 | C4○D8 | C8⋊C22 |
kernel | (C22×D8).C2 | C22.7C42 | C24.3C22 | C2×D4⋊C4 | C2×Q8⋊C4 | C2×C4.4D4 | C22×D8 | C22×SD16 | C2×C8 | C22×C4 | C2×D4 | C2×Q8 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 2 | 2 | 8 | 2 |
Matrix representation of (C22×D8).C2 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 13 | 0 | 0 |
0 | 0 | 4 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 4 | 0 | 0 |
0 | 0 | 5 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 16 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 15 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,7,4,0,0,0,0,13,10,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,14,0,0,0,0,14,14,0,0,0,0,0,0,10,5,0,0,0,0,4,7,0,0,0,0,0,0,1,16,0,0,0,0,0,16],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,15,1] >;
(C22×D8).C2 in GAP, Magma, Sage, TeX
(C_2^2\times D_8).C_2
% in TeX
G:=Group("(C2^2xD8).C2");
// GroupNames label
G:=SmallGroup(128,744);
// by ID
G=gap.SmallGroup(128,744);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,141,456,422,387,2019,1018,521,248,2804,1411,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^8=d^2=1,e^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,e*c*e^-1=a*c^3,e*d*e^-1=a*b*c^2*d>;
// generators/relations